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Abstract
The biocatalytic preparation of trans-hex-2-enal from trans-hex-2-enol using a novel aryl alcohol oxidase from Pleurotus eryngii

(PeAAOx) is reported. As O2-dependent enzyme PeAAOx-dependent reactions are generally plagued by the poor solubility of O2

in aqueous media and mass transfer limitations resulting in poor reaction rates. These limitations were efficiently overcome by con-

ducting the reaction in a flow-reactor setup reaching unpreceded catalytic activities for the enzyme in terms of turnover frequency

(up to 38 s−1) and turnover numbers (more than 300000) pointing towards preparative usefulness of the proposed reaction scheme.
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Introduction
trans-2-Hexenal is well-known as a major component of the

Green Notes of fruits and vegetables such as apples, straw-

berries, cherries and more. It is widely used in the flavour and

fragrance industry as fresh flavour ingredient in foods and

beverages.

One attractive access to trans-2-hex-2-enal is the oxidation of

the corresponding allylic alcohol to the aldehyde. Though at

first sight an oxidation of primary alcohols to the correspond-

ing aldehydes does not appear to be a major challenge, the

methods of the state-of-the-art are mostly plagued by undesired

side reactions [1]. Also some of the stoichiometric oxidants

used are questionable from an environmental and/or toxicolog-

ical point of view and therefore are not compatible with con-

sumer products such as Green Notes. Therefore, we turned our

attention to biocatalytic oxidation methods. For clean conver-
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sion of primary alcohols to aldehydes principally two biocat-

alytic approaches are available (Scheme 1) [2-5]. Alcohol dehy-

drogenases catalyse the reversible oxidation of alcohols in a

Meerwein–Ponndorf–Verley-type of reaction (Scheme 1A). The

poor thermodynamic driving force of this reaction, however,

necessitates significant molar surpluses of the stoichiometric

oxidant (such as acetone). This not only negatively influences

the environmental impact of the reaction [6] but also compli-

cates downstream processing. Furthermore, the nicotinamide

cofactor (even if used in catalytic amounts only) causes addi-

tional costs.

Scheme 1: Enzymatic reaction schemes for the selective oxidation of
trans-hex-2-enol. A: Alcohol dehydrogenase (ADH)-catalysed oxida-
tion producing stoichiometric amounts of NAD(P)H, which needs to be
recycled in situ; the overall reaction is reversible requiring surpluses of
the cosubstrate (e.g., acetone) to shift the overall equilibrium to the
side of trans-hex-2-enal. B: Envisioned aerobic oxidation using alcohol
oxidases (AOx). H2O2 is formed as byproduct and dismutated by cata-
lase into H2O and O2.

Therefore, we concentrated on alcohol oxidase-catalysed reac-

tion schemes (Scheme 1B. Oxidases utilise O2 as terminal elec-

tron acceptor for the oxidation reaction yielding H2O2 as sole

byproduct. The latter can be disproportionated easily by using

catalase (Scheme 1B). Furthermore, O2 reduction adds suffi-

cient thermodynamic driving force to the reaction to make it

essentially irreversible.

The benefits of using O2, however, also come with the disad-

vantage of its very poor solubility in aqueous media (ca.

0.25 mM at room temperature). Hence, in the course of an oxi-

dation reaction dissolved O2 is consumed rapidly and diffusion

of O2 into the reaction medium can easily become overall rate-

limiting. The O2 diffusion rate into the reaction medium directly

correlates with the interfacial area between aqueous medium

and the gas phase. Large interfacial surface areas can be

achieved via heterogeneous intake, by bubbling, stirring, etc.

Soluble enzymes, however, are often rather unstable under these

conditions, possibly owing to the mechanical stress leading to

irreversible inactivation of the biocatalyst [7,8]. Methods of

bubble-free aeration have been described in the literature to

alleviate the inactivation issue described above [9-12].

The continuous-flow microreactor technology has emerged as a

safe and scalable way to approach oxidation reactions [13,14].

Due to its small dimensions, hazardous reactions can be easily

controlled, owing to the large surface-to-volume ratio which

can minimise hot-spot formation and allows for control over

mixing and heating phenomena [15,16]. Furthermore, a well-

defined gas–liquid regime can be easily maintained [17,18].

High mass-transfer coefficients are generally the consequence

of small vortices induced by the segmented flow regime. This

flow pattern guarantees an enhanced contact between the two

phases and provides a uniform gas concentration in the liquid

segment.

Therefore, it is not very astonishing that also the biocatalysis

community is showing interest in flow chemistry. Several

biocatalytic processes have been reported in flow reactors [19],

mostly advocating easier process intensification in combination

with enzyme immobilization [20-23]. Also the higher oxygen-

transfer rates in flow reactions compared to batch reactions

have been emphasised by several groups. Here, reactor designs

ranging from simple flow reactors, tube-in-tube reactors [24],

agitated tube reactors [25,26] and continuous agitated cell reac-

tors [27] have been reported.

Encouraged by these contributions, we asked ourselves whether

a slug-flow approach may combine mechanically less

demanding conditions with high O2-transfer rates thereby

enabling efficient and robust oxidase-catalysed oxidation reac-

tions.

Results and Discussion
Selection and characterisation of the
biocatalyst
As biocatalyst for this study we focussed on the recombinant

aryl alcohol oxidase from Pleurotus eryngii (PeAAOx) [28-31].

Especially the availability as recombinant enzyme (enabling

future at-scale production and protein engineering) and its

promising activity on allylic alcohols make PeAAOx a promis-

ing starting point. Commercially available alcohol oxidases

from Pichia pastoris and Candida boidinii showed no signifi-

cant activity for the substrate under the same conditions. As

trans-2-hex-enol had not been reported as substrate for
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Table 1: Effect of variation of the gas-to-liquid ratio on the rate of the PeAAOx-catalysed aerobic oxidation of trans-hex-2-enol.

ratio
(liquid:gas)

liquid flow
[mL min−1]

gas flow
[mL min−1]

residence time [min] [product]
[mM]

1:1 0.20 0.20 15 5.48 (± 0.01)
1:3 0.10 0.30 15 5.18 (± 0.32)
1:5 0.067 0.333 16 4.99 (± 0.49)

Conditions: 3 mL flow reactor, 50 mM KPi buffer (pH 7, 30 °C), [trans-2-hexen-1-ol]0 = 10 mM, [PeAAOx] = 0.25 µM, [catalase] = 600 U mL−1.

PeAAOx we evaluated its catalytic properties, particularly the

substrate concentration-dependency of the enzymatic oxidation.

Initial rate measurements (performed in 1 mL cuvettes) revealed

a Michaelis–Menten dependency of the enzyme activity

(Figure 1). Apparent KM and kcat values of approximately 1 mM

and 22 s−1 were estimated, respectively. These values are in the

same order of magnitude as those for benzyl alcohol substrates

reported previously [29]. The slightly decreasing enzyme activi-

ty at elevated substrate concentrations may be an indication for

a slight substrate inhibition. Performing these initial rate mea-

surements in the presence of varying product concentrations

showed a pronounced product inhibition (Supporting Informa-

tion File 1, Figure S2, vide infra).

Figure 1: Michaelis–Menten kinetics of the PeAAOx-catalysed oxida-
tion of trans-hex-2-enol. Conditions: 50 mM KPi buffer (pH 7, 30 °C),
[trans-hex-2-enol]0 = 3 mM, [PeAAOx] = 0.044 µM, [horseradish perox-
idase] = 500 U mL−1, [ABTS] = 2 mM.

Continuous-flow reactor enzymatic oxidation
Next, we performed the PeAAOx-catalysed oxidation of trans-

hex-2-enol in a slug-flow reactor setup (Supporting Informa-

tion File 1, Figure S1 and Figures S9–S11). In a first set of ex-

periments we systematically varied the residence time of the

reaction mixture in the flow reactor (and thereby the reaction

time, Figure 2).

Figure 2: The influence of the residence time on the conversion of
trans-hex-2-enol (red squares) to trans-2-hexenal (black diamonds) in
a flow reactor. Conditions: 3 mL flow reactor, 50 mM KPi buffer (pH 7,
30 °C), [trans-hex-2-enol]0 = 10 mM, [PeAAOx] = 0.25 µM, [catalase] =
600 U mL−1.

A full conversion of the starting material into the desired trans-

hex-2-enal was observed at residence (reaction) times of

approximately 40 min corresponding to a turnover number (TN)

for the biocatalysts of 32400 and an average turnover frequen-

cy (TF) of 13.5 s−1. Even more interestingly, at higher flow

rates apparent TF of up to 38 s−1 (RT = 5 min) were observed.

This value exceeds the previously determined kcat(PeAAOx)

(Figure 1) significantly. We attribute this observation to an in-

creased oxygen-transfer rate at high flow rates. In the case of

the 5 minutes residence time this corresponds to an O2-transfer

rate of roughly 0.25 mM min−1. Similarly high values could be

obtained previously only under mechanically demanding reac-

tion conditions or using surfactant-stabilised emulsions [7].

Varying the ratio of gas to liquid had no significant effect on the

overall rate of the reaction (Table 1).
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Within the experimental error, the conversion in all experi-

ments was identical indicating that even at a comparably low

volumetric ratio of 1:1 the O2 availability was already suffi-

cient not to be overall rate-limiting.

It is worth mentioning here that under batch reaction conditions,

similar progression curves were only attainable under mechani-

cally very demanding conditions (i.e., very vigorous stirring and

bubbling of O2 directly into the reaction mixture, Supporting

Information File 1, Figure S3). These conditions also caused a

significant evaporation of the substrate at higher substrate con-

centration (Supporting Information File 1, Figure S4), which

was much less the case in the flow-reaction setup.

From an economical point-of-view the catalyst performance in

terms of turnover number (TN) is of utmost importance as it

directly correlates with the cost-contribution of the catalyst to

the production costs [32-34]. Therefore we evaluated the TN

attainable for PeAAOx in the flow setup (Figure 3). For this

lower PeAAOx concentrations as well as significantly in-

creased residence times were applied. The increased residence

times were achieved by decreasing the flow rates and using a

longer flow reactor (6 mL volume instead of 3 mL).

Figure 3: Increasing the PeAAOx turnover numbers (TN) by increas-
ing the residence time. Conditions: 6 mL flow reactor, 50 mM KPi
buffer (pH 7, 30 °C), [trans-hex-2-enol]0 = 40 mM, [PeAAOx] = 0.02
µM, [catalase] = 600 U mL−1. The TN value was calculated based on
the GC yield of every run. The TN was obtained by dividing the prod-
uct concentration (as determined chromatographically) by the biocata-
lyst concentration.

Pleasingly, already in these first experiments a TN for the en-

zyme of more than 300000 was observed at long residence

times. This also underlines the robustness of the enzyme under

the flow conditions. Compared to Figure 2 somewhat lower TFs

for PeAAOx were observed here, which again can be attributed

to a lower O2-transfer rate at lower flow rates. The quasi-linear

relationship shown in Figure 3 also suggests that even higher

TN may be attainable – however at the expense of longer reac-

tion times. Therefore, further investigations will focus on identi-

fying conditions satisfying the demand for high TNs and short

reaction times. Encouraged by these results, we also tried a

semi-preparative scale reaction using 5 g L−1 (50 mM) sub-

strate loading in a total of 50 mL with 0.75 μM PeAAOx. As a

result, 90% conversion was achieved after 18 h of total reaction

time (roughly 80 minutes of residence time in the 6 mL reactor).

The product was purified chromatographically resulting in 200

mg of pure trans-hex-2-enal (as determined by NMR) in 81%

isolated yield thereby demonstrating the preparative potential of

the proposed reaction setup.

Conclusion
Alcohol oxidase-catalysed oxidation of alcohols to aldehydes

bears a significant potential for preparative biocatalysis. The

reaction is independent from expensive and instable nicotin-

amide cofactors (and the corresponding cosubstrates/coprod-

ucts as well as possible regeneration enzymes) and produces

only water as byproduct. These advantages, however, are coun-

teracted by the generally low reaction rates caused by the poor

O2 availability. Flow chemistry is a promising technique to

provide the aqueous reaction mixture with O2 needed for the

oxidation. It enables high O2 transfer rates while avoiding en-

zyme robustness issues frequently observed with ‘traditional’

aeration methods.

Future developments in our laboratories will concentrate on the

characterisation, extension and preparative demonstration of

this powerful combination of oxidase catalysis and flow chem-

istry.

Experimental
General
Turnover numbers (TN) and turnover frequencies (TF) reported

in this manuscript were calculated based on Equation 1 and

Equation 2.

(1)

(2)
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Production of PeAAOx
E. coli cultivation
For the production, activation and purification of PeAAOx, a

slightly modified literature protocol was used [28]. Pre-cultures

of LB media containing 100 μg mL−1 of ampicillin were

inoculated with E. coli W3110 containing pFLAG1-AAO and

incubated overnight at 37 °C and 180 rpm. Overexpression

was carried out in 5 L flasks with 1 L of TB medium supple-

mented with 100 μg mL−1 of ampicillin. The medium was

inoculated with the pre-culture to an OD of 0.05 and grown

at 37 °C and 180 rpm. At an OD600 of 0.8, 1 mM isopropyl

β-D-thiogalactopyranoside (IPTG) was added and the cultures

were incubated for additional 4 h at 37 °C and 180 rpm. The

bacterial pellets, obtained after harvesting the cells, were

re-suspended in a total volume of 40 mL 50 mM Tris/HCl

buffer, pH 8.0, containing 10 mM EDTA and 5 mM dithio-

threitol (DTT).

Refolding
The re-suspended cells were disrupted by incubation with

2 mg mL−1 lysozyme for 1 h at 4 °C. Afterwards, 0.1 mg mL−1

DNase, 1 mM MgCl2 and 0.1 mM PMSF were added followed

by sonication. The insoluble fraction was collected by centrifu-

gation (30 min at 15,000 rpm and 4 °C), re-suspended and

washed three times with 20 mL 20 mM Tris/HCl buffer, pH 8.0,

containing 10 mM EDTA and 5 mM DTT using a potter

homogenizing device. The pellets obtained after centrifugation

(15 min at 15,000 rpm and 4 °C) were solubilized in a total

volume of 30 mL 20 mM Tris/HCl buffer, pH 8.0, containing

2 mM EDTA, 50 mM DTT and 8 M urea. After incubation on

ice for 30 min, the solution was cleared by centrifugation

(15 min at 15,000 rpm and 4 °C). The obtained supernatant was

used as stock solution for the in vitro refolding.

The PeAAOx was solubilized using 150 µg mL−1 protein in

20 mM Tris/HCl buffer, pH 9.0, containing 2.5 mM GSSG,

1 mM DTT, 0.02 mM FAD, 34% glycerol and 0.6 M urea at

4 °C for 80 h. After the incubation for PeAAOx activation/

refolding, the refolding mixture was concentrated to 100 mL

and the buffer exchanged against 10 mM sodium phosphate

buffer, pH 5.5 by diafiltration (DV 20) and subsequently

concentrated using an Amicon Ultra 15 mL centrifugal filter

(MWCO 10 kDa). After centrifugation (overnight at 15,000 rpm

and 4 °C), the soluble fraction was further purified using anion-

exchange chromatography.

Purification
The concentrated PeAAOx solution was purified using a 58 mL

Q Sepharose column (GE Healthcare). PeAAOx was eluted

with a linear NaCl gradient (0–0.6 M over 6 CV) using 10 mM

sodium phosphate buffer, pH 5.5. Fractions containing

PeAAOx were pooled, concentrated and desalted using HiTrap

desalting columns (GE Healthcare) and 10 mM sodium phos-

phate buffer, pH 5.5. The PeAAOx concentration was calcu-

lated based on the absorbance using the molar extinction coeffi-

cient of ε463 11,050 M−1 cm−1.

Activity assay
The activity of PeAAOx was determined by UV–vis spectros-

copy, using an Agilent Cary 60 UV–vis spectrophotometer,

following the oxidation of ABTS (ε405 = 36,800 M−1 cm−1) by

horseradish peroxidase (POD) at the expense of hydrogen

peroxide. In general, 0.044 µM PeAAOx was used to convert

3 mM of trans-2-hex-2-enol. The hydrogen peroxide formed in

this reaction was subsequently used to convert 2 mM of ABTS

to ABTS·+ by an excess of POD (500 U mL−1). The reactions

were performed at 30 °C in oxygen-saturated 50 mM KPi buffer

at pH 7.0.

Flow reactor experiments
PFA microreactor coils (750 μm ID) with a volume of 3 and

6 mL were constructed. The reaction mixture was introduced

via a syringe pump (Fusion 200, Chemyx), while the pure

oxygen flow was controlled by a mass flow controller (EL-

FLOW, Bronkhorst), resulting in a segmented flow (Supporting

Information File 1, Figure S8). Residence times were taken as

the time between the solution entering and exiting the coil and

were varied by altering the flow, keeping the ratio of oxygen to

liquid at three to one. Samples were collected on ice and as

soon as enough volume was collected, extracted with ethyl

acetate and analysed by GC (vide infra).

GC analysis
The collected reaction mixtures were extracted into an equal

volume of ethyl acetate, dried with magnesium sulphate and

analysed on a CP-wax 52 CB GC column (50 m × 0.53 m ×

2 µm) (GC method: 60 °C for 3 min; 30 °C/min to 105 °C;

105 °C for 7 min; 30 °C/min to 250 °C; 250 °C for 1 minute).

Dodecane (5 mM) was added as standard.

Work-up semi-preparative scale
The reaction mixture was directly collected in deuterated

chloroform at the end of the flow reactor followed by recording

the NMR spectrum in order to evaluate the conversion (see Sup-

porting Information File 1). The organic mixture was diluted

and introduced into a separation funnel and washed with brine.

The aqueous phase was backwashed once with DCM. The

collected organic phase was dried over MgSO4, filtered and

concentrated under reduced pressure. Purification of the isolat-

ed mixture was performed by flash chromatography on silica

(pure DCM). The final product was obtained as colourless oil

(200 mg).
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(E)-Hex-2-enal

TLC (DCM) Rf 0.9; 1H NMR (399 MHz, CDCl3) δ 9.44 (d, J =

7.7 Hz, 1H), 6.78 (dt, J = 15.6, 6.8 Hz, 1H), 6.05 (ddq, J = 15.5,

7.8, 1.3 Hz, 1H), 2.33–2.18 (m, 2H), 1.48 (h, J = 7.4 Hz, 2H),

0.90 (t, J = 7.4 Hz, 3H); 13C NMR (101 MHz, CDCl3) δ 194.3,

158.9, 133.3, 34.8, 21.3, 13.8.

Supporting Information
Supporting Information File 1
General information and supporting figures.

[https://www.beilstein-journals.org/bjoc/content/

supplementary/1860-5397-14-58-S1.pdf]
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